TSPH EduCare Private Limited

PHYSICS

1) Match List I with List II:

	List I		List II
A.	Attenuation	I.	Combination of a receiver and transmitter.
B	Transducer	II.	process of retrieval of information from the carrier wave at receiver
C.	Demodulation	III.	converts one form of energy into another
D.	Repeater	IV.	Loss of strength of a signal while propogating through A medium.

Choose the correct answer from the options given below:
a) A-IV; B-III; C-II; D-I
b) A-I; B-II; C-III; D-IV
c) A-IV; B-III; C-I; D-II
d) A-II; B-III; C-IV; D-I
2) A vehicle travels $\mathbf{4} \mathbf{~ k m}$ with speed of $\mathbf{3} \mathbf{~ k m} / \mathrm{h}$ and another 4 km with speed of $5 \mathrm{~km} / \mathrm{h}$, then its average speed is
a) $3.75 \mathrm{~km} / \mathrm{h}$
b) $3.50 \mathrm{~km} / \mathrm{h}$
c) $4.25 \mathrm{~km} / \mathrm{h}$
d) $4.00 \mathrm{~km} / \mathrm{h}$
3) As shown in the figure, a current of 2A flowing in an equilateral triangle of side $4 \sqrt{3} \mathrm{~cm}$, The magnetic field at the centroid 0 of the triangle is

(Neglect the effect of earth's magnetic field)
a) $4 \sqrt{3} \times 10^{-4} T$
b) $4 \sqrt{3} \times 10^{-5} \mathrm{~T}$
c) $3 \sqrt{3} \times 10^{-5} \mathrm{~T}$
d) $\sqrt{3} \times 10^{-4} T$
4) The output Y for the inputs A and B of circuit is given by

Truth table of the shown circuit is:
a)

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

b)

c)

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

d)

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	1

5) Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R

Assertion A: The nuclear density of nuclides ${ }_{5}^{10} \mathrm{~B},{ }_{3}^{6} \mathrm{Li},{ }_{26}^{56} \mathrm{Fe},{ }_{10}^{20} \mathrm{Ne}$ and ${ }_{83}^{209} \mathrm{Bi}$ can be arranged as $\rho_{B i}^{N}>\rho_{F e}^{N}>\rho_{N e}^{N}>\rho_{B}^{N}>\rho_{L i}^{N}$

Reason R: The radius R of nucleus is related to its mass number 4 as $R=R_{0} A^{1 / 8}$, where R_{0} is a constant.
a)

Both A and R are true but R is NOT the correct explanation of A
c) A is true but R is false

Both A and R are
b) true and R is the correct explanation of A
A is false but R is
d) true
6) other is labelled as Reason R

Assertion A: Efficiency of a reversible heat engine will be highest at $-273^{\circ} \mathrm{C}$ temperature of cold, reservoir.

Reason R: The efficiency of Carnot's engine depends not only on temperature of cold reservoir but it depends on the temperature of hot. reservoir too and is given as $n=\left(1-\frac{T_{2}}{T_{1}}\right)$

In the light of the above statements, choose the correct answer from the options given below
A is false
a) but R is true
A is true
c) but R is
false
Both A and R are true and R
b) is the correct explanation of A Both A and R are true but R
d) is NOT the correct explanation of A
7) The equivalent resistance between A and B is

a) $\frac{2}{3} \Omega$
b) $\frac{3}{2} \Omega$
c) $\frac{1}{3} \Omega$
d) $\frac{1}{2} \Omega$
8) A flask contains hydrogen and oxygen in the ratio of $2: 1$ by mass at temperature $27^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of hydrogen and oxygen respectively is:
a) $4: 1$
b) $1: 1$
c) $1: 4$
d) $2: 1$
9) In the given circuit, rms value of current ($I_{\text {rms }}$) through the resistor R is:

a) 2 A
b) $2 \sqrt{2} A$
c) $\frac{1}{2} A$
d) 20 A
10) For a simple harmonic motion in a mass spring system shown, the surface is frictionless. When the mass of the block is $\mathbf{1 ~ k g}$, the angular frequency is ω_{1}. When the mass block is $\mathbf{2} \mathbf{~ k g}$ the angular frequency is ω_{2}. The ratio ω_{2} / ω_{1} is

a) $\frac{1}{\sqrt{2}}$
b) 2
c) $\sqrt{2}$
d) $\frac{1}{2}$
11) Match List I with List II:

	Column I		Column II
A.	Torque	I.	$\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$
B.	Energy density	II.	$\mathrm{kg} \mathrm{ms}^{-1}$
C.	Pressure gradient	III.	$\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-2}$
D.	Impulse	IV.	$\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$

Choose the correct answer from the options given below:
a) A-IV; B-I; C-II; D-III
b) A-IV; B-I; C-III; D-II
c) A-I; B-IV; C-III; D-II
d) $\mathrm{A}-\mathrm{IV} ; \mathrm{B}-\mathrm{III} ; \mathrm{C}-\mathrm{I} ; \mathrm{D}-\mathrm{II}$
12) A block of $\sqrt{3} \mathbf{k g}$ is attached to a string whose other end is attached to the wall. An unknown force F is applied so that the string makes an angle of 30° with the wall. The tension T is (Given $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

a) 20 N
b) 15 N
c) 25 N
d) 10 N
13) A machine gun of mass $\mathbf{1 0} \mathbf{~ k g}$ fires $\mathbf{2 0 g}$ bullets at the rate of 180 bullets per minute with a speed of $100 \mathrm{~m} \mathrm{~s}^{-1}$ each. The recoil velocity of the gun is
a) $1.5 \mathrm{~m} / \mathrm{s}$
b) $0.02 \mathrm{~m} / \mathrm{s}$
c) $2.5 \mathrm{~m} / \mathrm{s}$
d) $0.6 \mathrm{~m} / \mathrm{s}$
14) A current carrying rectangular loop PQRS is made of uniform wire. The length $P R=Q S=5$ cm and $\mathrm{PQ}=\mathrm{RS}=100 \mathrm{~cm}$. If ammeter current reading changes from I to $2 I$, the ratio of magnetic forces per unit length on the wire PQ due to wire RS in the two cases respectively $\left(f_{P Q}^{I}: f_{P Q}^{2 I}\right)$ is:

a) $1: 2$
b) $1: 3$
c) $1: 5$
d) $1: 4$
15) A thin prism P_{1} with an angle 6° and made of glass of refractive index 1.54 is combined with another prism $\mathbf{P}_{\mathbf{2}}$ made from glass of refractive index 1.72 to produce dispersion without average deviation. The angle of prism P_{2} is
a) 4.5°
b) 1.3°
c) 6°
d) 7.8°
16) As shown in the figure, a point charge \mathbf{Q} is placed at the centre of conducting spherical shell of inner radius a and outer radius b. The electric field due to charge \mathbf{Q} in three different regions I, II and III is given by: (I: $\mathrm{r}<\alpha, \mathrm{II}: \alpha<\mathrm{r}$ $<$ b, III : r > b)

a) $\mathrm{E}_{\text {I }} \neq 0, \mathrm{E}_{\text {II }}=0, \mathrm{E}_{\text {III }} \neq 0$
b) $\mathrm{E}_{I}=0, \mathrm{E}_{I I}=0, \mathrm{E}_{\text {III }}=0$
c) $\mathrm{E}_{I} \neq 0, \mathrm{E}_{I I}=0, \mathrm{E}_{\text {III }}=0$
d) $E_{I}=0, E_{I I}=0, E_{I I I} \neq 0$
17) An object is allowed to fall from a height R above the earth, where R is the radius of earth. Its velocity when it strikes the earth's surface, ignoring air resistance, will be
a) $\sqrt{g R}$
b) $\sqrt{\frac{g R}{2}}$
c) $\sqrt{2 g R}$
d) $2 \sqrt{g R}$
18) A force is applied to a steel wire ' A ', rigidly clamped at one end. As a result elongation in the wire is $0.2 \mathbf{~ m m}$. If same force is applied to another steel wire ' B ' of double the length and a diameter 2.4 times that of the wire ' A ' the elongation in the wire ' B ' will be (wires having uniform circular cross sections)
a) $6.9 \times 10^{-2} \mathrm{~mm}$
b) $6.06 \times 10^{-2} \mathrm{~mm}$
c) $2.77 \times 10^{-2} \mathrm{~mm}$
d) $3.0 \times 10^{-2} \mathrm{~mm}$
19) A point source of 100 W emits light with 5% efficiency. At a distance of 5 m from the source, the intensity produced by the electric field component is:
a) $\frac{1}{2 \pi}, \frac{W}{m^{2}}$
b) $\frac{1}{40 \pi}, \frac{W}{m^{2}}$
c) $\frac{1}{20 \pi} \frac{W}{m^{2}}$
d) $\frac{1}{10 \pi} \frac{W}{m^{2}}$
20) An electron accelerated through a potential difference V_{1} has a de-Broglie wavelength of λ. When the potential is changed to V_{2}, its de-Broglie wavelength increases by 50%. The value of $\left(\frac{V_{1}}{V_{2}}\right)$ is equal to
a) 3
b) $3 / 2$
c) $9 / 4$
d) 4
21) If the potential difference between B and D is zero, the value of x is $\frac{1}{n} \Omega$. The value of n is
\qquad _.

)
22) In an ac generator, a rectangular coil of 100 turns each having area $14 \times 10^{-2} \mathrm{~m}^{2}$ is rotated at $360 \mathrm{rev} / \mathrm{min}$ about an axis perpendicular to a uniform magnetic field of magnitude 3.0 T . The maximum value of the emf produced will be
\qquad v. $\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$
)
23) A radioactive nucleus decays by two different process. The half life of the first process is 5 minutes and that of the second process is 30 s . The effective half-life of the nucleus is calculated to be $\frac{\alpha}{11}$ s. The value of α is \qquad .
)
24) A faulty thermometer reads $5^{\circ} \mathrm{C}$ in melting ice and $95^{\circ} \mathrm{C}$ in steam. The correct temperature on absolute scale will be \qquad K when the faulty thermometer reads $41^{\circ} \mathrm{C}$.)
25) The velocity of a particle executing SHM varies with displacement (x) as
$4 v^{2}=50-x^{2}$. The time period of oscillations is $\frac{x}{7} \quad \mathrm{~s}$. The value of x is \qquad . (Take $\pi=\frac{22}{7}$)
)
26) As shown in figure, a cuboid lies in a region with electric field $E=2 x^{2} \hat{i}-4 y \hat{j}+6 \hat{k} \frac{N}{C}$. The magnitude of charge within the cuboid is $n \in 0 C$. The value of n is \qquad (if dimension of cuboid is 1×2 $\times 3 \mathrm{~m}^{3}$).

)
27) A stone tied to 180 cm long string at its end is making 28 revolutions in horizontal circle in every minute. The magnitude of acceleration of stone is $\frac{1936}{x} \mathrm{~ms}^{-2}$. The value of x
\qquad . $\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$
)
28) In a Young's double slit experiment, the intensities at two points, for the path differences $\frac{\lambda}{4}$ and $\frac{\lambda}{3}$ (λ being the wavelength of light used) are I_{1} and I_{2} respectively. If I_{0} denotes the intensity produced by each one of the individual slits, then $\frac{I_{1}+I_{2}}{I_{0}}=$ \qquad .)
29) A body of mass 2 kg is initially at rest. It starts moving unidirectionally under the influence of a source of constant power P . Its displacement in 4 s is $\frac{1}{3} a^{2} \sqrt{P}$. The value of a will be
\qquad .
30) A uniform disc of mass $0,5 \mathrm{~kg}$ and radius r is projected with velocity 18 mis at $t=0 \mathrm{~s}$ on a rough horizontal surface. It starts off with a purely sliding motion at $\mathrm{t}=0 \mathrm{~s}$. After 2 s it acquires a purely rolling motion (see figure). The total kinetic energy of the disc after $2 s$ will be
\qquad J (given, coefficient of friction is 0.3 and $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.

)

CHEMISTRY

31) Given below are two statements:

Statement I: During Electrolytic refining, the pure metal is made to act as anode and its impure metallic form is used as cathode.

Statement II: During the Hall-Heroult electrolysis process, purified $\mathrm{Al}_{2} \mathrm{O}_{3}$ is mixed with $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ to lower the melting point of the mixture.

In the light of the above statements, choose the most appropriate answer from the options given below:

Both statement I and Statement II are
a)
incorrect
Statement I is incorrect but Statement
b) II is correct
c)

Statement I is correct but Statement II
c) is incorrect
d) Both Statement I and Statement II are correct
32) Given below are two statements: One is labelled as Assertion A and the
other is labelled as Reason R.
Assertion A: Antihistamines do not affect the secretion of acid in stomach.

Reason R : Antiallergic and antacid drugs work on different receptors.

In the light of the above statements, choose the correct answer from the options given below:
a)

Both A and R are true and R is the correct explanation of A
b) Both A and R are true but R is not the correct explanation of A
c) A is false but R is true
d) both Assertion \& Reason are false.
33) Decreasing order towards SN 1 reaction for the following compounds is:

a

b

c

d
a) $a>c>d>b$
b) $d>b>c>a$
c) $a>b>c>d$
d) b $>$ d $>c>a$
34) The water quality of a pond was analysed and its BOD was found to be 4 . The pond has
a)
Highly polluted water
b) Very clean water
Slightly
c) polluted water
d)

Water has high amount
of fluoride compounds
35) Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.

Assertion A:

reduced using $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$ to

Reason $\mathrm{R}: \mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$ is used to reduce carbonyl group to - CH_{2} - group.

In the light of the above statements, choose the correct answer from the options given below:

Both A and R are
a) true and R is the correct explanation
b)
A is true but R is false
Both A and R are
c)
A is false but R is true
d) true but R is not the correct explanation of A
36) Formulae for Netssler's reagent is:
a) $\mathrm{KHg}_{2} \mathrm{I}_{2}$
b) Hgl_{2}
c) KHgl_{3}
d) $\mathrm{K}_{2} \mathrm{Hgl}_{4}$
37) Chlorides of which metal are soluble in organic solvents:
a) Be
b) K
c) Ca
d) Mg
38) Boric acid is solid, whereas BF_{3} is gas at room temperature because of
a) Strong hydrogen bond in Boric acid
b) Strong covalent bond in BF_{3}
c) Strong ionic bond in Boric acid
d) Strong van der Waal's interaction in Boric acid
39) The $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ bond angle values in a fac[$\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}$] complex is/are:
a) 90°
b) $90^{\circ} \& 180^{\circ}$
c) 180°
d) $90^{\circ} \& 120^{\circ}$
40) Match List I with List II:

	List I (Complexes)		List II (Hybridisation)
A.	$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$	I.	sp^{3}
B.	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	II.	dsp 2
C.	$\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	III.	sp $^{3} \mathrm{~d}^{2}$
D.	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	IV.	D $^{2} \mathrm{sp}^{3}$

a) A-II; B-I; C-IV; D-III
b) A-II; B-I; C-III; D-IV
c) $\mathrm{A}-\mathrm{I} ; \mathrm{B}-\mathrm{II} ; \mathrm{C}-\mathrm{III} ; \mathrm{D}-\mathrm{IV}$
d) A-I; B-II; C-IV; D-III
41) The correct order of $p K_{a}$ values for the following compounds is:

b

c

d
a) b $>$ d $>$ a $>$ c
b) c $>$ a $>$ d $>$ b
c) a $>$ b $>$ c $>$ d
d) b $>$ a $>$ d $>$ c
42) Match List I with List II:

	List I (Mixture)		List II (Separation Technique)
A.	CHCl_{3} $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	I.	Steam distillation
B.	$\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{C}_{5} \mathrm{H}_{12}$	II.	Differential extraction
C.	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}$	III.	Distillation
D.	Organic compound $\mathrm{H}_{2} \mathrm{O}$	IV.	Fractional distillation

a) A-IV, B-I, C-III, D-II
b) A-II, B-I, C-III, D-IV
c) $A-I I I, B-I V, C-I, D-I I$
d) A-III, B-I, C-IV, D-II
43) Which of the following raction is correct?
a) $2 \mathrm{LiNO}_{3} \xrightarrow{\Delta} 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2}$
b) $2 \mathrm{LiNO}_{3} \rightarrow 2 \mathrm{Li}+2 \mathrm{NO}_{2}+\mathrm{O}_{2}$
c) $4 \mathrm{LiNO}_{3} \xrightarrow{\Delta} 2 \mathrm{Li}_{2} \mathrm{O}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
d) $4 \mathrm{LiNO}_{3} \xrightarrow{\Delta} 2 \mathrm{Li}_{2} \mathrm{O}+2 \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{O}_{2}$
44) $1 \mathrm{~L}, 0.02 \mathrm{M}$ solution of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ is mixed with $1 \mathrm{~L}, 0.02 \mathrm{M}$ solution of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$. The resulting solution is divided into two equal parts (X) and treated with excess of AgNO_{3} solution and BaCl_{2} solution respectively as shown below:

1 L Solution $(X)+\mathrm{AgNO}_{3}$ solution (excess) $\rightarrow Y$
1 L Solution (X) $+\mathrm{BaCl}_{2}$ solution (excess) $\rightarrow \mathbf{Z}$
The number of moles of Y and Z respectively are
a) $0.01,0.01$
b) $0.02,0.01$
c) $0.02,0.02$
d) $0.01,0.02$
45) The wave function (Ψ) of $\mathbf{2 s}$ is given by $\psi=\frac{1}{2 \sqrt{2 \pi}}\left(\frac{1}{a_{0}}\right)^{1 / 2}\left(2-\frac{r}{a_{0}}\right) e^{\frac{-r}{2 a_{0}}}$
At $r=r_{0}$, radial node is formed. Thus, r_{0} in terms of a_{0}
a) $r_{0}=a_{0}$
b) $r_{0}=2 a_{0}$
c) $r_{0}=4 a_{0}$
d) $r_{0}=\frac{a_{0}}{2}$
46) In the above conversion of compound (X) to product (Y), the sequence of

a) (i) $\mathrm{Fe}, \mathrm{H}^{+}$(ii) $\mathrm{Br}_{2}(\mathrm{aq})$ (iii) HNO_{2} (iv) CuBr
b) (i) $\mathrm{Fe}, \mathrm{H}^{+}$(ii) Br_{2} (aq) (iii) HNO_{2} (iv) $\mathrm{H}_{3} \mathrm{PO}_{2}$
c) (i) $\mathrm{Br}_{2}($ aq $)$ (ii) LiAlH_{4} (iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
d) (i) $\mathrm{Br}_{2}, \mathrm{Fe}$ (ii) $\mathrm{Fe}, \mathrm{H}^{+}$(iii) LiAlH_{4}
47) KMnO_{4} oxidises I^{-}in acidic and neutral/faintly alkaline solution, respectively, to
a) $\mathrm{I}_{2} \& \mathrm{IO}_{3}^{-}$
b) $I_{2} \& I_{2}$
c) $\mathrm{IO}_{3}^{-} \& \mathrm{IO}_{3}^{-}$
d) $\mathrm{IO}_{3}^{-} \& \mathrm{I}_{2}$
48) The most stable carbocation for the following is:

a
a) d
b) c
c) a
d) b
49) Bond dissociation energy of "E-H" bond of the " $\mathrm{H}_{2} \mathrm{E}$ " hydrides of group 16 elements (given below), follows order
A. 0
B. S
C. Se
D. Te

Choose the correct from the options given below:
a) A $>$ B $>$ D $>C$
b) $\mathrm{B}>\mathrm{A}>\mathrm{C}>\mathrm{D}$
c) $\mathrm{A}>\mathrm{B}>\mathrm{C}>$ D
d) D $>$ C $>$ B $>$ A
50) Maximum number of electrons that can be accommodated in shell with $\mathbf{n}=\mathbf{4}$ are
a) 32
b) 72
c) 16
d) 50
51) A short peptide on complete hydrolysis produces 3 moles of glycine (G), two moles of leucine (L) and two moles of valine (V) per mole of peptide. The number of peptide linkages in it are \qquad
)
52) An organic compound undergoes first order decomposition. If the time taken for the 60% decomposition is 540 s , then the time required for 90% decomposition will be is
\qquad s. (Nearest integer). Given: $\ln 10=$ 2.3; $\log 2=0.3$
)
53) Iron oxide FeO, crystallises in a cubic lattice with a unit cell edge length of $5.0 \AA$. If density of the FeO in the crystal is $4.0 \mathrm{~g} \mathrm{~cm}^{-3}$, then the number of FeO units present per unit cell is \qquad . (Nearest integer) Given: Molar mass of Fe and O is 56 and $16 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively. $N_{A}=6.0 \times 10^{23} \mathrm{~mol}^{-1}$
)
54) The strength of 50 volume solution of hydrogen peroxide is \qquad g/L (Nearest integer).
Given: Molar mass of $\mathrm{H}_{2} \mathrm{O}_{2} 34 \mathrm{~g} \mathrm{~mol}^{-1}$
Molar volume of gas at STP $=22.7 \mathrm{~L}$.
55) The graph of $\log \frac{x}{m}$ vs $\log p$ for an adsorption process is a straight line in inclined at an angle of 45° with intercept equal to 0.6020. The mass of gas adsorbed per unit mass of adsorbent at the pressure of 0.4 atm is \qquad $\times 10^{-1}$ (Nearest integer). Given: $\log 2=0.3010$
)
56) 1 mole of ideal gas is allowed to expand reversibly and adiabatically from a temperature of $27^{\circ} \mathrm{C}$. The work done is 3 kJ mol^{-1}. The final temperature of the gas is K (Nearest integer). Given $C_{v}=20$ $.1 \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
)
57) Lead storage battery contains 38% by weight solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The van't Hoff factor is 2.67 at this concentration. The temperature in Kelvin at which the solution in the battery will freeze is \qquad (Nearest integer).
Given $K_{f}=1.8 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
)
58) The electrode potential of the following half cell at $298 \mathrm{KX}\left|\mathrm{X}^{2+}(0.001 \mathrm{M})\right|\left|\mathrm{Y}^{2+}(0.01 \mathrm{M})\right| \mathrm{Y}$ is \qquad $\times 10^{-2} \mathrm{~V}$ (Nearest integer).

Given: $E_{X^{2+} \mid X}^{o}=-2.36 \mathrm{~V}$
$E_{Y^{2+} \mid Y}^{o}=+0.36 \mathrm{~V}$
$\frac{2.303 R T}{F}=0.06 \mathrm{~V}$
)
59) Consider the following equation:
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}), \Delta \mathrm{H}=-190 \mathrm{~kJ}$
The number of factors which will increase the yield of SC from the following is
A. Increasing temperature
B. Increasing pressure
C. Adding more SO_{2}
D. Adding more O_{2}
E. Addition of catalyst
)
60) Number of compounds from the following which will not dissolve in cold NaHCO_{3} and NaOH solutions but will dissolve in hot NaOH solution is

)

MATHEMATICS

61) The number of ways of selecting two numbers a and $b, a \in\{2,4,6, \ldots, 100\}$ and $b \in(1,3,5, \ldots .$. , $99\}$ such that 2 is the remainder when $a+b$ is divided by 23 is
a) 108
b) 268
c) 54
d) 186
62) Lat a, b, c, a^{3}, b^{3} and c^{3} be in A.P., and $\operatorname{lag}_{a} b$, $\log _{c} a$ and $\log _{b} c$ be in G.P. If the sum of first 20 terms of an A.P., whose first term is $\frac{a+4 b+c}{3}$ and the common difference is $\frac{a-8 b-+c}{10}$ is $\mathbf{- 4 4 4}$, then abc is equal to
a) 216
b) $\frac{343}{8}$
c) 343
d) $\frac{125}{8}$
63) If P is a $\mathbf{3} \times \mathbf{3}$ real matrix such that $P^{\top}=a P+(a$ $-1) I$, where $a>1$, then
a) $|\operatorname{adj} \mathrm{P}|=1 / 2$
b) $\mid \operatorname{Adj}$ P $\mid>1$
c) $|\operatorname{adj} P|=1$
d) P is a singular matrix
64) Let $\lambda \in \mathrm{R}, \vec{a}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}-\lambda \hat{j}+2 \hat{k}$. If $((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=$ $8 \hat{i}-40 \hat{j}-24 \hat{k}$, then $|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^{2}$ is equal to
a) 132
b) 136
c) 144
d) 140
65) $\lim _{n \rightarrow \infty} \frac{3}{n}\left\{4+\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{2}{n}\right)^{2}+\ldots+\left(3-\frac{1}{n}\right)^{2}\right\}$ is equal to
a) $\frac{19}{3}$
b) 0
c) 12
d) 19
66) If a plane passes through the points ($-\mathbf{1}, \mathbf{k}, \mathbf{0}$), $(2, k,-1),(1,1,2)$ and is parallel to the line $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$, then the value of $\frac{k^{2}+1}{(k-1)(k-2)}$ is
a) $\frac{17}{5}$
b) $\frac{13}{6}$
c) $\frac{6}{13}$
d) $\frac{5}{17}$
67) Let $x=(8 \sqrt{3}+13)^{13}$ and $y=(7 \sqrt{2}+9)^{9}$. If [t] denotes the greatest integer $\leq \mathrm{t}$, then
[x] is even but [y] is
[x] and [y] are both
a) odd
b) odd
c) $[\mathrm{X}]+[\mathrm{Y}]$ is even d) even
[x] is odd but [y$]$ is
68) Let A be a point on the x-axis. Common tangents are drawn from A to the curves x^{2} $+y^{2}=8$ and $y^{2}=16 x$. If one of these tangents touches the two curves at Q and R, then ($Q R)^{2}$ is equal to
a) 81
b) 64
c) 72
d) 76
69) The solution of the differential equation
$\frac{d y}{d x}=-\left(\frac{x^{2}+3 y^{2}}{3 x^{2}+y^{2}}\right), y(1)=0$ is
a) $\log _{e}|x+y|-\frac{x y}{(x+y)^{2}}=0$
b) $\log _{e}|x+y|+\frac{2 x y}{(x+y)^{2}}=0$
c) $\log _{e}|x+y|-\frac{2 x y}{(x+y)^{2}}=0$
d) $\log _{e}|x+y|+\frac{x y}{(x+y)^{2}}=0$
70) Let S be the set of all values of a_{1}, for which the mean deviation about the mean of 100 consecutive positive integers $a_{1}, a_{2}, a_{3}, \ldots, a_{100}$ is 25. Then S is
a) $\{99\}$
b) N
c) $\{9\}$
d) ϕ
${ }^{\text {71) }}$ A vector \vec{v} in the first octant is inclined to the \mathbf{x}-axis at 60 ', to the \mathbf{y}-axis at In and to the \mathbf{z} axis at an acute angle. If a plane passing through the points $[\sqrt{2},-1,1$) and (a, b, c), is normal to \vec{v}, then
a) $a+\sqrt{2} b+c=1$
b) $\sqrt{2} a-b+c=1$
c) $\sqrt{2} a+b+c=1$
d) $a+b+\sqrt{2} c=1$
71) Consider the following statements:

P: I have fever
Q: I will not take medicine
R: I will take rest.
The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to:
a) $((\sim P) \vee \sim Q) \wedge((\sim P) \vee \sim R)$
b) $((\sim P) \vee \sim Q)((\sim P) \vee R)$
c) $(P \vee \sim Q) \wedge(P \vee \sim R)$
d) $(P \vee Q) \wedge((\sim P) \vee R)$
73) The range of the function $f(x)=\sqrt{3-x}+\sqrt{2+x}$ is
a) $[2 \sqrt{2}, \sqrt{11}]$
b) $[\sqrt{2}, \sqrt{7}]$
c) $[\sqrt{5}, \sqrt{13}]$
d) $[\sqrt{5}, \sqrt{10}]$
74) Let f, g and h be the real valued functions defined on R as
$f(x)=\left\{\begin{array}{ll}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}\right.$,
$g(x)= \begin{cases}\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\ 1, & x=-1\end{cases}$
and $h(x)=2[x]-f(x)$, where $[x]$ is the greatest integer $\leq x$.

Then the value of $\lim _{x \rightarrow 1} g(h(x-1))$ is
a) 1
b) -1
c) $\sin (1)$
d) 0
75) For $\alpha, \beta \in R$, suppose the system of linear equations
$x-y+z=5$
$2 x+2 y+\alpha z=8$
$3 x-y+4 z=\beta$
has infinitely many solutions. Then α and β are the roots of
a) $x^{2}+14 x+24=0$
b) $x^{2}-18 x+56=0$
c) $x^{2}+18 x+56=0$
d) $x^{2}-10 x+16=0$
76) The parabolas: $a x^{2}+2 b x+c y=0$ and $d x^{2}+2 e x$ $+f y=0$ intersect on the line $y=1$. If a, b, c, d, e, f are positive real numbers and a, b, c are in G.P., then
a) $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P.
b) $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in G.P.
c) d, e, f are in G.P.
d) d, e, f are in A.P.
${ }^{77)}$ Let \vec{a} and \vec{b} be two vectors, Let
$|\vec{a}|=1,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=2$. If $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$, , then the value of $\vec{b} \cdot \vec{c}$ is
a) -24
b) -48
c) -84
d) -60
78) If the functions $f(x)=\frac{x^{3}}{3}+2 b x+\frac{a x^{2}}{2}$ and $g(x)=\frac{x^{3}}{3}+a x+b x^{2}, \quad \mathbf{a} \neq \mathbf{2 b}$ have \mathbf{a} common extreme point, then $a+2 b+7$ is equal to:
a) $\frac{3}{2}$
b) 6
c) 4
d) 3
79) Let $a_{1}=1, a_{2}, a_{3}, a_{4}, \ldots$ be consecutive natural numbers. Then $\tan ^{-1}\left(\frac{1}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{1}{1+a_{2} a_{3}}\right)+\ldots$ $+\tan ^{-1}\left(\frac{1}{1+a_{2021} a_{2022}}\right)$ is equal to
a) $\tan ^{-1}(2022)-\frac{\pi}{4}$
b) $\frac{\pi}{4}-\cot ^{-1}(2022)$
c) $\frac{\pi}{4}-\tan ^{-1}(2022)$
d) $\cot ^{-1}(2022)-\frac{\pi}{4}$
80) Let q be the maximum integral value of p in $[0,10]$ for which the roots of the equation $x^{2}-p x+\frac{5}{4} p=0$ are rational. Then the area of the region $\left\{(x, y): 0 \leq y \leq(x-q)^{2}\right.$, $0 \leq x \leq q\} i s$
a) 25
b) $\frac{125}{3}$
c) 164
d) 243
81) Let $P\left(a_{1}, b_{1}\right)$ and $Q\left(a_{2}, b_{2}\right)$ be two distinct points on a circle with center $C(\sqrt{2}, \sqrt{3})$. Let O be the origin and $O C$ be perpendicular to both CP and CQ. If the area of the triangle OCP is $\frac{\sqrt{35}}{2}$, then $a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}$ is equal to \qquad)
82) If the value of real number $a>0$ for which $x^{2}-$ $5 a x+1=0$ and $x^{2}-a x-5=0$ have a common real root is $\frac{3}{\sqrt{2 \beta}}$ then β is equal to \qquad)
83) Let $A=\{1,2,3,5,8,9\}$. Then the number of possible functions. $f: A \rightarrow A$ such that $f(m \cdot n)=$ $f(m) \cdot f(n)$ for every $m, n \in A$ with $m \cdot n \in A$ is equal to \qquad
)
84) If $\int \sqrt{\sec 2 x-1} d x$
$=a \log _{e}\left|\cos 2 x+\beta+\sqrt{\cos 2 x\left(1+\cos \frac{1}{\beta} x\right)}\right|$

+ constant, then $\beta-\alpha$ is equal to
)

85) A bag contains six balls of different colours. Two balls are drawn in succession with replacement. The probability that both the balls are of the same colour is p. Next four balls are drawn in succession with replacement and the probability that exactly three balls are of the same colour in q. If $p: q=m: n$, where m and n are coprime, then $m+n$ is equal to \qquad .
)
86) Let a line L pass through the point $P(2,3,1\}$ and be parallel to the line $x+3 y-2 z-2=0=$ $x-y+2 z$. If the distance of L from the point (5, $3,8)$ is α, then $3 \alpha^{2}$ is equal to \qquad .
)
87) Let A be the area of the region $\left\{(x, y): y \geq x^{2}, y\right.$ $\left.\geq\{1-x)^{2}, y \leq 2 x(1-x)\right\}$. Then $540 A$ is equal to
\qquad —.
)
88) $50^{\text {th }}$ root of a number x is 12 and $50^{\text {th }}$ root of another number y is 18 . Then the remainder obtained on dividing $(x+y)$ by 25 is \qquad -
89) The $8^{\text {th }}$ common term of the series
$\mathrm{S}_{1}=3+7+11+15+19+\ldots$,
$S_{2}=1+6+11+16+21+\ldots .$.
Is \qquad
)
90) The number of seven digits odd numbers, that can be formed using all the seven digits $1,2,2$, $2,3,3,5$ is \qquad)
